Title of article :
The Hamiltonian index of graphs
Author/Authors :
Hong، نويسنده , , Yi and Lin، نويسنده , , Jian-Liang and Tao، نويسنده , , Zhi-Sui and Chen، نويسنده , , Zhi-Hong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
The Hamiltonian index of a graph G is defined as h ( G ) = min { m : L m ( G ) is Hamiltonian } . In this paper, using the reduction method of Catlin [P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29–44], we constructed a graph H ̃ ( m ) ( G ) from G and prove that if h ( G ) ≥ 2 , then h ( G ) = min { m : H ̃ ( m ) ( G ) has a spanning Eulerian subgraph } .
Keywords :
Line graph , Hamiltonian index , Collapsible graph
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics