Title of article
Commutativity of the adjacency matrices of graphs
Author/Authors
Akbari، نويسنده , , S. and Moazami، نويسنده , , F. and Mohammadian، نويسنده , , A.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
6
From page
595
To page
600
Abstract
We say that two graphs G 1 and G 2 with the same vertex set commute if their adjacency matrices commute. In this paper, we find all integers n such that the complete bipartite graph K n , n is decomposable into commuting perfect matchings or commuting Hamilton cycles. We show that there are at most n − 1 linearly independent commuting adjacency matrices of size n ; and if this bound occurs, then there exists a Hadamard matrix of order n . Finally, we determine the centralizers of some families of graphs.
Keywords
Graph decomposition , Commutativity , Adjacency matrix
Journal title
Discrete Mathematics
Serial Year
2009
Journal title
Discrete Mathematics
Record number
1598519
Link To Document