Title of article :
Some relations between rank, chromatic number and energy of graphs
Author/Authors :
Akbari، نويسنده , , S. and Ghorbani، نويسنده , , E. and Zare، نويسنده , , S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
5
From page :
601
To page :
605
Abstract :
The energy of a graph G , denoted by E ( G ) , is defined as the sum of the absolute values of all eigenvalues of G . Let G be a graph of order n and rank ( G ) be the rank of the adjacency matrix of G . In this paper we characterize all graphs with E ( G ) = rank ( G ) . Among other results we show that apart from a few families of graphs, E ( G ) ≥ 2 max ( χ ( G ) , n − χ ( G ¯ ) ) , where n is the number of vertices of G , G ¯ and χ ( G ) are the complement and the chromatic number of G , respectively. Moreover some new lower bounds for E ( G ) in terms of rank ( G ) are given.
Keywords :
Energy , chromatic number , Rank
Journal title :
Discrete Mathematics
Serial Year :
2009
Journal title :
Discrete Mathematics
Record number :
1598520
Link To Document :
بازگشت