Title of article :
The total chromatic number of Pseudo-Halin graphs with lower degree
Author/Authors :
Meng، نويسنده , , Xianyong and Guo، نويسنده , , Jianhua and Li، نويسنده , , Rensuo and Chen، نويسنده , , Tao and Su، نويسنده , , Bentang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
5
From page :
982
To page :
986
Abstract :
The total chromatic number χ T ( G ) of a graph G is the least number of colors needed to color the vertices and the edges of G such that no adjacent or incident elements receive the same color. The Total Coloring Conjecture(TCC) states that for every simple graph G , χ T ( G ) ≤ Δ ( G ) + 2 . In this paper, we show that χ T ( G ) = Δ ( G ) + 1 for all pseudo-Halin graphs with Δ ( G ) = 4 and 5.
Keywords :
Pseudo-Halin graphs , Total chromatic number , total coloring
Journal title :
Discrete Mathematics
Serial Year :
2009
Journal title :
Discrete Mathematics
Record number :
1598562
Link To Document :
بازگشت