Title of article :
Faulhaber’s theorem on power sums
Author/Authors :
Chen، نويسنده , , William Y.C. and Fu، نويسنده , , Amy M. and Zhang، نويسنده , , Iris F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
8
From page :
2974
To page :
2981
Abstract :
We observe that the classical Faulhaber’s theorem on sums of odd powers also holds for an arbitrary arithmetic progression, namely, the odd power sums of any arithmetic progression a + b , a + 2 b , … , a + n b is a polynomial in n a + n ( n + 1 ) b / 2 . While this assertion can be deduced from the original Fauhalber’s theorem, we give an alternative formula in terms of the Bernoulli polynomials. Moreover, by utilizing the central factorial numbers as in the approach of Knuth, we derive formulas for r -fold sums of powers without resorting to the notion of r -reflective functions. We also provide formulas for the r -fold alternating sums of powers in terms of Euler polynomials.
Keywords :
Power sum , r -fold alternating power sum , Alternating sum , Bernoulli polynomial , Euler polynomial , Faulhaber’s theorem , r -fold power sum
Journal title :
Discrete Mathematics
Serial Year :
2009
Journal title :
Discrete Mathematics
Record number :
1598786
Link To Document :
بازگشت