Title of article :
The -number of powers of paths
Author/Authors :
Kohl، نويسنده , , Anja، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
4
From page :
3427
To page :
3430
Abstract :
Given a graph G = ( V , E ) and a positive integer d , an L ( d , 1 ) -labelling of G is a function f : V → { 0 , 1 , … } such that if two vertices x and y are adjacent, then | f ( x ) − f ( y ) | ≥ d ; if they are at distance 2, then | f ( x ) − f ( y ) | ≥ 1 . The L ( d , 1 ) -number of G , denoted by λ d , 1 ( G ) , is the smallest number m such that G has an L ( d , 1 ) -labelling with m = max { f ( x ) ∣ x ∈ V } . We correct the result on the L ( d , 1 ) -number of powers of paths given by Chang et al. in [G.J. Chang, W.-T. Ke, D. Kuo, D.D.-F. Liu, R.K. Yeh, On L ( d , 1 ) -labelings of graphs, Discrete Math. 220 (2000) 57–66].
Keywords :
Powers of paths , L ( d , Distance two labelling , 1 ) -labelling
Journal title :
Discrete Mathematics
Serial Year :
2009
Journal title :
Discrete Mathematics
Record number :
1598838
Link To Document :
بازگشت