Title of article :
The edge-Wiener index of a graph
Author/Authors :
Dankelmann، نويسنده , , P. O. Gutman and I. Seginer، نويسنده , , I. and Mukwembi، نويسنده , , S. H. Swart، نويسنده , , H.C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
If G is a connected graph, then the distance between two edges is, by definition, the distance between the corresponding vertices of the line graph of G . The edge-Wiener index W e of G is then equal to the sum of distances between all pairs of edges of G . We give bounds on W e in terms of order and size. In particular we prove the asymptotically sharp upper bound W e ( G ) ≤ 2 5 5 5 n 5 + O ( n 9 / 2 ) for graphs of order n .
Keywords :
Wiener index , Line graph , distance
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics