Title of article :
On (d,1)-total numbers of graphs
Author/Authors :
Lih، نويسنده , , Ko-Wei and Liu، نويسنده , , Daphne Der-Fen and Wang، نويسنده , , Weifan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
7
From page :
3767
To page :
3773
Abstract :
A ( d , 1 ) -total labelling of a graph G assigns integers to the vertices and edges of G such that adjacent vertices receive distinct labels, adjacent edges receive distinct labels, and a vertex and its incident edges receive labels that differ in absolute value by at least d . The span of a ( d , 1 ) -total labelling is the maximum difference between two labels. The ( d , 1 ) -total number, denoted λ d T ( G ) , is defined to be the least span among all ( d , 1 ) -total labellings of G . We prove new upper bounds for λ d T ( G ) , compute some λ d T ( K m , n ) for complete bipartite graphs K m , n , and completely determine all λ d T ( K m , n ) for d = 1 , 2 , 3 . We also propose a conjecture on an upper bound for λ d T ( G ) in terms of the chromatic number and the chromatic index of G .
Keywords :
1 ) -total labelling , 1 ) -labelling , Chromatic index , chromatic number , ( d , L ( 2 , channel assignment
Journal title :
Discrete Mathematics
Serial Year :
2009
Journal title :
Discrete Mathematics
Record number :
1598873
Link To Document :
بازگشت