Title of article :
Disjoint hamiltonian cycles in bipartite graphs
Author/Authors :
Ferrara، نويسنده , , Michael K. Gould، نويسنده , , Ronald and Tansey، نويسنده , , Gerard and Whalen، نويسنده , , Thor، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
10
From page :
3811
To page :
3820
Abstract :
Let G = ( X , Y ) be a bipartite graph and define σ 2 2 ( G ) = min { d ( x ) + d ( y ) : x y ∉ E ( G ) , x ∈ X , y ∈ Y } . Moon and Moser [J. Moon, L. Moser, On Hamiltonian bipartite graphs, Israel J. Math. 1 (1963) 163–165. MR 28 # 4540] showed that if G is a bipartite graph on 2 n vertices such that σ 2 2 ( G ) ≥ n + 1 , then G is hamiltonian, sharpening a classical result of Ore [O. Ore, A note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55] for bipartite graphs. Here we prove that if G is a bipartite graph on 2 n vertices such that σ 2 2 ( G ) ≥ n + 2 k − 1 , then G contains k edge-disjoint hamiltonian cycles. This extends the result of Moon and Moser and a result of R. Faudree et al. [R. Faudree, C. Rousseau, R. Schelp, Edge-disjoint Hamiltonian cycles, Graph Theory Appl. Algorithms Comput. Sci. (1984) 231–249].
Keywords :
graph , bipartite , Degree sum , Disjoint hamiltonian cycles
Journal title :
Discrete Mathematics
Serial Year :
2009
Journal title :
Discrete Mathematics
Record number :
1598878
Link To Document :
بازگشت