• Title of article

    Existence of generalized Bhaskar Rao designs with block size 3

  • Author/Authors

    Abel، نويسنده , , R. Julian R. and Combe، نويسنده , , Diana and Price، نويسنده , , Georgina and Palmer، نويسنده , , William D.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    10
  • From page
    4069
  • To page
    4078
  • Abstract
    There are well-known necessary conditions for the existence of a generalized Bhaskar Rao design over a group G , with block size k = 3 . The recently proved Hall–Paige conjecture shows that these are sufficient when v = 3 and λ = | G | . We prove these conditions are sufficient in general when v = 3 , and also when | G | is small, or when G is dicyclic. We summarize known results supporting the conjecture that these necessary conditions are always sufficient when k = 3 .
  • Keywords
    Generalized Bhaskar Rao design , Dicyclic group , Group divisible design
  • Journal title
    Discrete Mathematics
  • Serial Year
    2009
  • Journal title
    Discrete Mathematics
  • Record number

    1598902