• Title of article

    Symmetric Schrِder paths and restricted involutions

  • Author/Authors

    Deng، نويسنده , , Eva Y.P. and Dukes، نويسنده , , Mark and Mansour، نويسنده , , Toufik and Wu، نويسنده , , Susan Y.J.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    8
  • From page
    4108
  • To page
    4115
  • Abstract
    Let A k be the set of permutations in the symmetric group S k with prefix 12. This paper concerns the enumeration of involutions which avoid the set of patterns A k . We present a bijection between symmetric Schröder paths of length 2 n and involutions of length n + 1 avoiding A 4 . Statistics such as the number of right-to-left maxima and fixed points of the involution correspond to the number of steps in the symmetric Schröder path of a particular type. For each k ≥ 3 we determine the generating function for the number of involutions avoiding the subsequences in A k , according to length, first entry and number of fixed points.
  • Keywords
    Forbidden subsequences , involutions , Symmetric Schrِder paths , Schrِder paths
  • Journal title
    Discrete Mathematics
  • Serial Year
    2009
  • Journal title
    Discrete Mathematics
  • Record number

    1598906