Title of article :
Symmetric Schrِder paths and restricted involutions
Author/Authors :
Deng، نويسنده , , Eva Y.P. and Dukes، نويسنده , , Mark and Mansour، نويسنده , , Toufik and Wu، نويسنده , , Susan Y.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
8
From page :
4108
To page :
4115
Abstract :
Let A k be the set of permutations in the symmetric group S k with prefix 12. This paper concerns the enumeration of involutions which avoid the set of patterns A k . We present a bijection between symmetric Schröder paths of length 2 n and involutions of length n + 1 avoiding A 4 . Statistics such as the number of right-to-left maxima and fixed points of the involution correspond to the number of steps in the symmetric Schröder path of a particular type. For each k ≥ 3 we determine the generating function for the number of involutions avoiding the subsequences in A k , according to length, first entry and number of fixed points.
Keywords :
Forbidden subsequences , involutions , Symmetric Schrِder paths , Schrِder paths
Journal title :
Discrete Mathematics
Serial Year :
2009
Journal title :
Discrete Mathematics
Record number :
1598906
Link To Document :
بازگشت