• Title of article

    Polychromatic colorings of arbitrary rectangular partitions

  • Author/Authors

    Gerbner، نويسنده , , Dلniel and Keszegh، نويسنده , , Balلzs and Lemons، نويسنده , , Nathan and Palmer، نويسنده , , Cory and Pلlvِlgyi، نويسنده , , Dِmِtِr and Patkَs، نويسنده , , Balلzs، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    10
  • From page
    21
  • To page
    30
  • Abstract
    A general (rectangular) partition is a partition of a rectangle into an arbitrary number of non-overlapping subrectangles. This paper examines vertex 4-colorings of general partitions where every subrectangle is required to have all four colors appear on its boundary. It is shown that there exist general partitions that do not admit such a coloring. This answers a question of Dimitrov et al. [D. Dimitrov, E. Horev, R. Krakovski, Polychromatic colorings of rectangular partitions, Discrete Mathematics 309 (2009) 2957–2960]. It is also shown that the problem to determine if a given general partition has such a 4-coloring is NP-Complete. Some generalizations and related questions are also treated.
  • Keywords
    Polychromatic colorings , Rectangular partitions
  • Journal title
    Discrete Mathematics
  • Serial Year
    2010
  • Journal title
    Discrete Mathematics
  • Record number

    1599205