Title of article :
A multiply intersecting Erdős–Ko–Rado theorem — The principal case
Author/Authors :
Tokushige، نويسنده , , Norihide، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
8
From page :
453
To page :
460
Abstract :
Let m ( n , k , r , t ) be the maximum size of F ⊂ [ n ] k satisfying | F 1 ∩ ⋯ ∩ F r | ≥ t for all F 1 , … , F r ∈ F . We prove that for every p ∈ ( 0 , 1 ) there is some r 0 such that, for all r > r 0 and all t with 1 ≤ t ≤ ⌊ ( p 1 − r − p ) / ( 1 − p ) ⌋ − r , there exists n 0 so that if n > n 0 and p = k / n , then m ( n , k , r , t ) = n − t k − t . The upper bound for t is tight for fixed p and r .
Keywords :
Intersecting family , Erd?s–Ko–Rado theorem , p -weight
Journal title :
Discrete Mathematics
Serial Year :
2010
Journal title :
Discrete Mathematics
Record number :
1599256
Link To Document :
بازگشت