Title of article :
The local spectra of regular line graphs
Author/Authors :
Fiol، نويسنده , , M.A. and Mitjana، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
511
To page :
517
Abstract :
The local spectrum of a graph G = ( V , E ) , constituted by the standard eigenvalues of G and their local multiplicities, plays a similar role as the global spectrum when the graph is “seen” from a given vertex. Thus, for each vertex i ∈ V , the i -local multiplicities of all the eigenvalues add up to 1; whereas the multiplicity of each eigenvalue λ of G is the sum, extended to all vertices, of its local multiplicities. s work, using the interpretation of an eigenvector as a charge distribution on the vertices, we compute the local spectrum of the line graph L G in terms of the local spectrum of the regular graph G it derives from. Furthermore, some applications of this result are derived as, for instance, some results about the number of circuits of L G .
Keywords :
Eigenvalue , local multiplicity , Line graph , Graph spectrum
Journal title :
Discrete Mathematics
Serial Year :
2010
Journal title :
Discrete Mathematics
Record number :
1599264
Link To Document :
بازگشت