Title of article :
Every tree is a large subtree of a tree that decomposes or
Author/Authors :
Lladَ، نويسنده , , A. and Lَpez، نويسنده , , S.C. and Moragas، نويسنده , , J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
5
From page :
838
To page :
842
Abstract :
Let T be a tree with m edges. A well-known conjecture of Ringel states that T decomposes the complete graph K 2 m + 1 . Graham and Häggkvist conjectured that T also decomposes the complete bipartite graph K m , m . In this paper we show that there exists an integer n with n ≤ ⌈ ( 3 m − 1 ) / 2 ⌉ and a tree T 1 with n edges such that T 1 decomposes K 2 n + 1 and contains T . We also show that there exists an integer n ′ with n ′ ≥ 2 m − 1 and a tree T 2 with n ′ edges such that T 2 decomposes K n ′ , n ′ and contains T . In the latter case, we can improve the bound if there exists a prime p such that ⌈ 3 m / 2 ⌉ ≤ p < 2 m − 1 .
Keywords :
Graph labelings , Graph decompositions , Combinatorial Nullstellensatz
Journal title :
Discrete Mathematics
Serial Year :
2010
Journal title :
Discrete Mathematics
Record number :
1599302
Link To Document :
بازگشت