Title of article :
Impossible differential cryptanalysis using matrix method
Author/Authors :
Kim، نويسنده , , Jongsung and Hong، نويسنده , , Seokhie and Lim، نويسنده , , Jongin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
The general strategy of impossible differential cryptanalysis is to first find impossible differentials and then exploit them for retrieving subkey material from the outer rounds of block ciphers. Thus, impossible differentials are one of the crucial factors to see how much the underlying block ciphers are resistant to impossible differential cryptanalysis. In this article, we introduce a widely applicable matrix method to find impossible differentials of block cipher structures whose round functions are bijective. Using this method, we find various impossible differentials of known block cipher structures: Nyberg’s generalized Feistel network, a generalized CAST256-like structure, a generalized MARS-like structure, a generalized RC6-like structure, Rijndael structures and generalized Skipjack-like structures. We expect that the matrix method developed in this article will be useful for evaluating the security of block ciphers against impossible differential cryptanalysis, especially when one tries to design a block cipher with a secure structure.
Keywords :
cryptanalysis , Impossible differential cryptanalysis , Feistel , Rijndael , Skipjack , Matrix method , block ciphers
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics