Author/Authors :
NGURAH، A.A.G. نويسنده , , A.A.G. and Salman، نويسنده , , A.N.M. and Susilowati، نويسنده , , L.، نويسنده ,
Abstract :
A simple graph G admits an H-covering if every edge in E ( G ) belongs to a subgraph of G isomorphic to H . The graph G is said to be H -magic if there exists a bijection f : V ( G ) ∪ E ( G ) → { 1 , 2 , 3 , … , | V ( G ) ∪ E ( G ) | } such that for every subgraph H ′ of G isomorphic to H , ∑ v ∈ V ( H ′ ) f ( v ) + ∑ e ∈ E ( H ′ ) f ( e ) is constant. G is said to be H -supermagic if f ( V ( G ) ) = { 1 , 2 , 3 , … , | V ( G ) | } . In this paper, we study cycle-supermagic labelings of chain graphs, fans, triangle ladders, graphs obtained by joining a star K 1 , n with one isolated vertex, grids, and books. Also, we study P t -(super)magic labelings of cycles.