Title of article :
A duality between pairs of split decompositions for a -polynomial distance-regular graph
Author/Authors :
Kim، نويسنده , , Joohyung، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
1828
To page :
1834
Abstract :
Let Γ denote a Q -polynomial distance-regular graph with diameter D ≥ 3 and standard module V . Recently, Ito and Terwilliger introduced four direct sum decompositions of V ; we call these the ( μ , ν ) -split decompositions of V , where μ , ν ∈ { ↓ , ↑ } . In this paper we show that the ( ↓ , ↓ )-split decomposition and the ( ↑ , ↑ )-split decomposition are dual with respect to the standard Hermitian form on V . We also show that the ( ↓ , ↑ )-split decomposition and the ( ↑ , ↓ )-split decomposition are dual with respect to the standard Hermitian form on V .
Keywords :
split decomposition , Distance-regular graph , Tridiagonal pair , Subconstituent algebra
Journal title :
Discrete Mathematics
Serial Year :
2010
Journal title :
Discrete Mathematics
Record number :
1599393
Link To Document :
بازگشت