Title of article :
A note on 2-distant noncrossing partitions and weighted Motzkin paths
Author/Authors :
Gessel، نويسنده , , Ira M. and Kim، نويسنده , , Jang Soo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
5
From page :
3421
To page :
3425
Abstract :
We prove a conjecture of Drake and Kim: the number of 2 -distant noncrossing partitions of { 1 , 2 , … , n } is equal to the sum of weights of Motzkin paths of length n , where the weight of a Motzkin path is a product of certain fractions involving Fibonacci numbers. We provide two proofs of their conjecture: one uses continued fractions and the other is combinatorial.
Keywords :
Continued fraction , Fibonacci number , Schrِder path , Dyck path , Motzkin path
Journal title :
Discrete Mathematics
Serial Year :
2010
Journal title :
Discrete Mathematics
Record number :
1599514
Link To Document :
بازگشت