• Title of article

    Upper bounds on the linear chromatic number of a graph

  • Author/Authors

    Li، نويسنده , , Chao and Wang، نويسنده , , Weifan and Raspaud، نويسنده , , André، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2011
  • Pages
    7
  • From page
    232
  • To page
    238
  • Abstract
    A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is a union of vertex-disjoint paths. The linear chromatic number lc ( G ) of G is the smallest number of colors in a linear coloring of G . be a graph with maximum degree Δ ( G ) . In this paper we prove the following results: (1) lc ( G ) ≤ 1 2 ( Δ ( G ) 2 + Δ ( G ) ) ; (2) lc ( G ) ≤ 8 if Δ ( G ) ≤ 4 ; (3) lc ( G ) ≤ 14 if Δ ( G ) ≤ 5 ; (4) lc ( G ) ≤ ⌊ 0.9 Δ ( G ) ⌋ + 5 if G is planar and Δ ( G ) ≥ 52 .
  • Keywords
    Linear coloring , maximum degree , Planar graph
  • Journal title
    Discrete Mathematics
  • Serial Year
    2011
  • Journal title
    Discrete Mathematics
  • Record number

    1599559