Title of article :
Paley type group schemes and planar Dembowski–Ostrom polynomials
Author/Authors :
Chen، نويسنده , , Yu Qing and Polhill، نويسنده , , John، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
16
From page :
1349
To page :
1364
Abstract :
In this paper we give some necessary and sufficient conditions for Dembowski–Ostrom polynomials to be planar. These conditions give a simple explanation of the Coulter–Matthews and Ding–Yin commutative semifields and enable us to obtain permutation polynomials from some of the Zha–Kyureghyan–Wang commutative semifields. We then give a generalization of Feng’s construction of Paley type group schemes in extra-special p -groups of exponent p and construct a family of Paley type group schemes in what we call the flag groups of finite fields. We also determine the strong multiplier groups of these group schemes. In the last section of this paper, we give a straightforward generalization of the twin prime power construction of difference sets to a construction of Hadamard designs from twin Paley type association schemes.
Keywords :
Paley type partial difference set , Permutation polynomial , Planar function , Skew Hadamard difference set , Dembowski–Ostrom polynomial , Paley type group schemes
Journal title :
Discrete Mathematics
Serial Year :
2011
Journal title :
Discrete Mathematics
Record number :
1599649
Link To Document :
بازگشت