Title of article :
On a conjecture of Murty and Simon on diameter 2-critical graphs
Author/Authors :
Haynes، نويسنده , , Teresa W. and Henning، نويسنده , , Michael A. and van der Merwe، نويسنده , , Lucas C. and Yeo، نويسنده , , Anders، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
7
From page :
1918
To page :
1924
Abstract :
A graph G is diameter 2-critical if its diameter is two, and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter 2-critical graph of order n is at most n 2 / 4 and that the extremal graphs are complete bipartite graphs with equal size partite sets. We use an association with total domination to prove the conjecture for the graphs whose complements have diameter three.
Keywords :
Diameter critical , Total domination edge critical
Journal title :
Discrete Mathematics
Serial Year :
2011
Journal title :
Discrete Mathematics
Record number :
1599699
Link To Document :
بازگشت