Title of article :
On the spectral characterization of some unicyclic graphs
Author/Authors :
Liu، نويسنده , , Xiaogang (Steven) Wang، نويسنده , , Suijie and Zhang، نويسنده , , Yuanping and Yong، نويسنده , , Xuerong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
20
From page :
2317
To page :
2336
Abstract :
Let H ( n ; q , n 1 , n 2 ) be a graph with n vertices containing a cycle C q and two hanging paths P n 1 and P n 2 attached at the same vertex of the cycle. In this paper, we prove that except for the A -cospectral graphs H ( 12 ; 6 , 1 , 5 ) and H ( 12 ; 8 , 2 , 2 ) , no two non-isomorphic graphs of the form H ( n ; q , n 1 , n 2 ) are A -cospectral. It is proved that all graphs H ( n ; q , n 1 , n 2 ) are determined by their L -spectra. And all graphs H ( n ; q , n 1 , n 2 ) are proved to be determined by their Q -spectra, except for graphs H ( 2 a + 4 ; a + 3 , a 2 , a 2 + 1 ) with a being a positive even number and H ( 2 b ; b , b 2 , b 2 ) with b ≥ 4 being an even number. Moreover, the Q -cospectral graphs with these two exceptions are given.
Keywords :
L -cospectral , A -spectrum , L -spectrum , Q -spectrum , A -cospectral , Q -cospectral
Journal title :
Discrete Mathematics
Serial Year :
2011
Journal title :
Discrete Mathematics
Record number :
1599736
Link To Document :
بازگشت