Title of article :
Cayley graphs of given degree and diameter for cyclic, Abelian, and metacyclic groups
Author/Authors :
Macbeth، نويسنده , , Heather and ?iagiov?، نويسنده , , Jana and ?ir??، نويسنده , , Jozef، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Let C C ( d , 2 ) and A C ( d , 2 ) be the largest order of a Cayley graph of a cyclic and an Abelian group, respectively, of diameter 2 and a given degree d . There is an obvious upper bound of the form C C ( d , 2 ) ≤ A C ( d , 2 ) ≤ d 2 / 2 + d + 1 . We prove a number of lower bounds on both quantities for certain infinite sequences of degrees d related to primes and prime powers, the best being C C ( d , 2 ) ≥ ( 9 / 25 ) ( d + 3 ) ( d − 2 ) and A C ( d , 2 ) ≥ ( 3 / 8 ) ( d 2 − 4 ) . We also offer a result for Cayley graphs of metacyclic groups for general degree and diameter.
Keywords :
Cayley graph , Degree-diameter problem , Group , Cyclic , Abelian , Metacyclic
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics