Title of article :
On sets of odd type of and the universal embedding of the dual polar space
Author/Authors :
De Bruyn، نويسنده , , Bart، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
7
From page :
554
To page :
560
Abstract :
A set of points of the projective space P G ( n , 4 ) , n ≥ 0 , is said to be of odd type, if it intersects each line at an odd number of points. The number of sets of odd type of P G ( n , 4 ) , n ≥ 0 , is known to be equal to 2 a n , where a n = 1 3 ( n + 1 ) ( n 2 + 2 n + 3 ) . In the present paper, we give an alternative more geometric proof of this property. The additional information revealed by this proof will allow us to prove some facts regarding the hyperplanes and the universal embedding of the Hermitian dual polar space D H ( 2 n − 1 , 4 ) .
Keywords :
Sets of points of projective spaces , Dual polar space , Hyperplane , embedding
Journal title :
Discrete Mathematics
Serial Year :
2012
Journal title :
Discrete Mathematics
Record number :
1599835
Link To Document :
بازگشت