Title of article :
Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs
Author/Authors :
Das، نويسنده , , Kinkar Ch.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
7
From page :
992
To page :
998
Abstract :
Let G = ( V , E ) be a simple graph. Denote by D ( G ) the diagonal matrix of its vertex degrees and by A ( G ) its adjacency matrix. Then the signless Laplacian matrix of G is Q ( G ) = D ( G ) + A ( G ) . In [5], Cvetković et al. (2007) have given conjectures on signless Laplacian eigenvalues of G (see also Aouchiche and Hansen (2010) [1], Oliveira et al. (2010) [14]). Here we prove two conjectures.
Keywords :
The largest signless Laplacian eigenvalue , signless Laplacian matrix , The smallest signless Laplacian eigenvalue , graph
Journal title :
Discrete Mathematics
Serial Year :
2012
Journal title :
Discrete Mathematics
Record number :
1599883
Link To Document :
بازگشت