Title of article :
A theorem on cycle–wheel Ramsey number
Author/Authors :
Chen، نويسنده , , Yaojun and Cheng، نويسنده , , T.C. Edwin and Ng، نويسنده , , C.T. and Zhang، نويسنده , , Yunqing، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
3
From page :
1059
To page :
1061
Abstract :
For two given graphs G 1 and G 2 , the Ramsey number R ( G 1 , G 2 ) is the smallest integer N such that for any graph G of order N , either G contains G 1 or the complement of G contains G 2 . Let C n denote a cycle of order n and W m a wheel of order m + 1 . In this paper, we show that R ( C n , W m ) = 3 n − 2 for m odd, n ≥ m ≥ 3 and ( n , m ) ≠ ( 3 , 3 ) , which was conjectured by Surahmat, Baskoro and Tomescu.
Keywords :
wheel , cycle , Ramsey number
Journal title :
Discrete Mathematics
Serial Year :
2012
Journal title :
Discrete Mathematics
Record number :
1599890
Link To Document :
بازگشت