Title of article :
Harmonious coloring of trees with large maximum degree
Author/Authors :
Akbari، نويسنده , , Saieed and Kim، نويسنده , , Jaehoon and Kostochka، نويسنده , , Alexandr، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
5
From page :
1633
To page :
1637
Abstract :
A harmonious coloring of G is a proper vertex coloring of G such that every pair of colors appears on at most one pair of adjacent vertices. The harmonious chromatic number of G , h ( G ) , is the minimum number of colors needed for a harmonious coloring of G . We show that if T is a forest of order n with maximum degree Δ ( T ) ≥ n + 2 3 , then h ( T ) = { Δ ( T ) + 2 , if  T  has non-adjacent vertices of degree  Δ ( T ) ; Δ ( T ) + 1 , otherwise. Moreover, the proof yields a polynomial-time algorithm for an optimal harmonious coloring of such a forest.
Keywords :
harmonious coloring , Tree
Journal title :
Discrete Mathematics
Serial Year :
2012
Journal title :
Discrete Mathematics
Record number :
1599961
Link To Document :
بازگشت