Title of article :
Vertex coloring without large polychromatic stars
Author/Authors :
Ilona Baracska and Bujtلs، نويسنده , , Csilla and Sampathkumar، نويسنده , , E. and Tuza، نويسنده , , Zsolt and Dominic، نويسنده , , Charles and Pushpalatha، نويسنده , , L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
7
From page :
2102
To page :
2108
Abstract :
Given an integer k ≥ 2 , we consider vertex colorings of graphs in which no k -star subgraph S k = K 1 , k is polychromatic. Equivalently, in a star- [ k ] -coloring the closed neighborhood N [ v ] of each vertex v can have at most k different colors on its vertices. The maximum number of colors that can be used in a star- [ k ] -coloring of graph G is denoted by χ ̄ k ⋆ ( G ) and is termed the star- [ k ] upper chromatic number of G . ablish some lower and upper bounds on χ ̄ k ⋆ ( G ) , and prove an analogue of the Nordhaus–Gaddum theorem. Moreover, a constant upper bound (depending only on k ) can be given for χ ̄ k ⋆ ( G ) , provided that the complement G ¯ admits a star- [ k ] -coloring with more than k colors.
Keywords :
Vertex coloring , Upper chromatic number , Local condition , graph coloring , C-coloring
Journal title :
Discrete Mathematics
Serial Year :
2012
Journal title :
Discrete Mathematics
Record number :
1600002
Link To Document :
بازگشت