Title of article :
The last twenty orders of -resolvable Steiner quadruple systems
Author/Authors :
Meng، نويسنده , , Zhaoping and Du، نويسنده , , Beiliang Du، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
11
From page :
3574
To page :
3584
Abstract :
A Steiner quadruple system ( X , B ) is said to be ( 1 , 2 ) -resolvable if its blocks can be partitioned into r parts such that each point of X occurs in exactly two blocks in each part. The necessary condition for the existence of ( 1 , 2 ) -resolvable Steiner quadruple systems RSQS ( 1 , 2 , v ) s is v ≡ 2 or 10 (mod 12). Hartman and Phelps in [A. Hartman, K.T. Phelps, Steiner quadruple systems, in: J.H. Dinitz, D.R. Stinson (Eds.), Contemporary Design Theory, Wiley, New York, 1992, pp. 205–240] posed a question whether the necessary condition for the existence of ( 1 , 2 ) -resolvable Steiner quadruple systems is sufficient. In this paper, we consider the last twenty orders of ( 1 , 2 ) -resolvable Steiner quadruple systems and show that the necessary condition for the existence of ( 1 , 2 ) -resolvable Steiner quadruple systems is also sufficient except for the order 10.
Keywords :
Resolvability , s -fan H design , Steiner quadruple system , Candelabra quadruple system
Journal title :
Discrete Mathematics
Serial Year :
2012
Journal title :
Discrete Mathematics
Record number :
1600176
Link To Document :
بازگشت