Title of article :
On the ratio of maximum and minimum degree in maximal intersecting families
Author/Authors :
Nagy، نويسنده , , Zoltلn Lَrلnt and ضzkahya، نويسنده , , Lale and Patkَs، نويسنده , , Balلzs and Vizer، نويسنده , , Mلté، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
5
From page :
207
To page :
211
Abstract :
To study how balanced or unbalanced a maximal intersecting family F ⊆ ( [ n ] r ) is we consider the ratio R ( F ) = Δ ( F ) δ ( F ) of its maximum and minimum degree. We determine the order of magnitude of the function m ( n , r ) , the minimum possible value of R ( F ) , and establish some lower and upper bounds on the function M ( n , r ) , the maximum possible value of R ( F ) . To obtain constructions that show the bounds on m ( n , r ) we use a theorem of Blokhuis on the minimum size of a non-trivial blocking set in projective planes.
Keywords :
intersecting families , Maximum and minimum degree , Blocking sets
Journal title :
Discrete Mathematics
Serial Year :
2013
Journal title :
Discrete Mathematics
Record number :
1600207
Link To Document :
بازگشت