Title of article :
Supermagic coverings of the disjoint union of graphs and amalgamations
Author/Authors :
Maryati، نويسنده , , T.K. and Salman، نويسنده , , A.N.M. and Baskoro، نويسنده , , E.T.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
9
From page :
397
To page :
405
Abstract :
Let H be a graph. A graph G = ( V , E ) admits an H -covering if every edge in E belongs to a subgraph of G isomorphic to H . A graph G is called H -magic if there is a fixed integer k and a total labeling f : V ∪ E → { 1 , 2 , … , | V | + | E | } such that for each subgraph H ′ = ( V ′ , E ′ ) of G isomorphic to H , ∑ v ∈ V ′ f ( v ) + ∑ e ∈ E ′ f ( e ) = k . If f ( V ) = { 1 , 2 , … , | V | } , then G is H -supermagic. In this paper, we investigate the G -supermagicness of a disjoint union of c copies of a graph G . We characterize all such graphs of being G -supermagic. We also show that a disjoint union of any paths is c P h -supermagic for some c and h . Besides, we prove that certain subgraph-amalgamation of graphs G is G -supermagic.
Keywords :
H -covering , H -magic labeling , ( k , ? ) -balanced , H -supermagic labeling
Journal title :
Discrete Mathematics
Serial Year :
2013
Journal title :
Discrete Mathematics
Record number :
1600228
Link To Document :
بازگشت