Title of article :
Unavoidable subtrees
Author/Authors :
Axenovich، نويسنده , , Maria and Osang، نويسنده , , Georg، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
7
From page :
924
To page :
930
Abstract :
Let T k be a family of all k -vertex trees. For T ⊆ T k and a tree T , we write T → T if T contains at least one of the trees from T as a subtree, we write T ⁄ → T otherwise. Let ex ( T ) be the smallest integer n , if such exists, such that for any tree T on at least n vertices T → T . It is shown that min { ex ( T ) : T ⊆ T k , | T | = q } = 2 Θ ( k log q − 1 k ) , where log q − 1 is the q − 1 times iterated logarithm. In addition, the bounds on ex ( T ) for families T with a given number of spiders are given.
Keywords :
Unavoidable trees , Subtrees , Spiders , Extremal trees
Journal title :
Discrete Mathematics
Serial Year :
2013
Journal title :
Discrete Mathematics
Record number :
1600287
Link To Document :
بازگشت