Title of article :
A forbidden subgraph characterization of some graph classes using betweenness axioms
Author/Authors :
Changat، نويسنده , , Manoj and Lakshmikuttyamma، نويسنده , , Anandavally K. and Mathews، نويسنده , , Joseph and Peterin، نويسنده , , Iztok and Narasimha-Shenoi، نويسنده , , Prasanth G. and Seethakuttyamma، نويسنده , , Geetha and ?pacapan، نويسنده , , Simon، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Let I G ( x , y ) and J G ( x , y ) be the geodesic and induced path intervals between x and y in a connected graph G , respectively. The following three betweenness axioms are considered for a set V and R : V × V → 2 V : (i)
( u , y ) , y ∈ R ( x , v ) , x ≠ y , | R ( u , v ) | > 2 ⇒ x ∈ R ( u , v ) ;
( u , v ) ⇒ R ( u , x ) ∩ R ( x , v ) = { x } ;
( u , y ) , y ∈ R ( x , v ) , x ≠ y ⇒ x ∈ R ( u , v ) .
aracterize the class of graphs for which I G satisfies (i), the class for which J G satisfies (ii) and the class for which I G or J G satisfies (iii). The characterization is given in terms of forbidden induced subgraphs. It turns out that the class of graphs for which I G satisfies (i) is a proper subclass of distance hereditary graphs and the class for which J G satisfies (ii) is a proper superclass of distance hereditary graphs. We also give an axiomatic characterization of chordal and Ptolemaic graphs.
Keywords :
Forbidden subgraphs , Interval function , Induced path , Betweenness axioms , chordal graphs , Distance hereditary graphs
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics