Title of article :
An improved bound on acyclic chromatic index of planar graphs
Author/Authors :
Guan، نويسنده , , Yue and Hou، نويسنده , , Jianfeng and Yang، نويسنده , , Yingyuan Li، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
6
From page :
1098
To page :
1103
Abstract :
A proper edge coloring of a graph G is called acyclic if there is no bichromatic cycle in G . The acyclic chromatic index of G , denoted by χ a ′ ( G ) , is the least number of colors k such that G has an acyclic k -edge-coloring. Basavaraju et al. [M. Basavaraju, L.S. Chandran, N. Cohen, F. Havet and T. Müller, Acyclic edge-coloring of planar graphs, SIAM Journal of Discrete Mathematics 25 (2) (2011) 463–478] showed that χ a ′ ( G ) ≤ Δ ( G ) + 12 for any planar graph G with maximum degree Δ ( G ) . In this paper, the bound is improved to Δ ( G ) + 10 .
Keywords :
Planar graph , Acyclic edge coloring , Critical graph
Journal title :
Discrete Mathematics
Serial Year :
2013
Journal title :
Discrete Mathematics
Record number :
1600309
Link To Document :
بازگشت