Title of article :
Planar graphs without cycles of length 4 or 5 are -colorable
Author/Authors :
Hill، نويسنده , , Owen P. Smith، نويسنده , , Diana and Wang، نويسنده , , Yingqian and Xu، نويسنده , , Lingji and Yu، نويسنده , , Gexin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
We study Steinberg’s Conjecture. A graph is ( c 1 , c 2 , … , c k ) -colorable if the vertex set can be partitioned into k sets V 1 , V 2 , … , V k such that for every i with 1 ≤ i ≤ k the subgraph G [ V i ] has maximum degree at most c i . We show that every planar graph without 4- or 5-cycles is ( 3 , 0 , 0 ) -colorable. This is a relaxation of Steinberg’s Conjecture that every planar graph without 4- or 5-cycles is properly 3-colorable (i.e., ( 0 , 0 , 0 ) -colorable).
Keywords :
Planar graph , Steinberg’s Conjecture , Improper coloring
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics