Title of article :
Describing 3-faces in normal plane maps with minimum degree 4
Author/Authors :
Borodin، نويسنده , , Oleg V. and Ivanova، نويسنده , , Anna O.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
7
From page :
2841
To page :
2847
Abstract :
In 1940, Lebesgue proved that every 3-polytope with minimum degree at least 4 contains a 3-face for which the set of degrees of its vertices is majorized by one of the following sequences: ( 4 , 4 , ∞ ) , ( 4 , 5 , 19 ) , ( 4 , 6 , 11 ) , ( 4 , 7 , 9 ) , ( 5 , 5 , 9 ) , ( 5 , 6 , 7 ) . n (2002) strengthened this to ( 4 , 4 , ∞ ) , ( 4 , 5 , 17 ) , ( 4 , 6 , 11 ) , ( 4 , 7 , 8 ) , ( 5 , 5 , 8 ) , ( 5 , 6 , 6 ) . ain the following description of 3-faces in normal plane maps with minimum degree at least 4 (in particular, it holds for 3-polytopes) in which every parameter is best possible and is attained independently of the others: ( 4 , 4 , ∞ ) , ( 4 , 5 , 14 ) , ( 4 , 6 , 10 ) , ( 4 , 7 , 7 ) , ( 5 , 5 , 7 ) , ( 5 , 6 , 6 ) .
Keywords :
Lebesgue’s theorem , Weight , Planar graph , Plane map , Structure properties
Journal title :
Discrete Mathematics
Serial Year :
2013
Journal title :
Discrete Mathematics
Record number :
1600521
Link To Document :
بازگشت