• Title of article

    Describing 3-faces in normal plane maps with minimum degree 4

  • Author/Authors

    Borodin، نويسنده , , Oleg V. and Ivanova، نويسنده , , Anna O.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2013
  • Pages
    7
  • From page
    2841
  • To page
    2847
  • Abstract
    In 1940, Lebesgue proved that every 3-polytope with minimum degree at least 4 contains a 3-face for which the set of degrees of its vertices is majorized by one of the following sequences: ( 4 , 4 , ∞ ) , ( 4 , 5 , 19 ) , ( 4 , 6 , 11 ) , ( 4 , 7 , 9 ) , ( 5 , 5 , 9 ) , ( 5 , 6 , 7 ) . n (2002) strengthened this to ( 4 , 4 , ∞ ) , ( 4 , 5 , 17 ) , ( 4 , 6 , 11 ) , ( 4 , 7 , 8 ) , ( 5 , 5 , 8 ) , ( 5 , 6 , 6 ) . ain the following description of 3-faces in normal plane maps with minimum degree at least 4 (in particular, it holds for 3-polytopes) in which every parameter is best possible and is attained independently of the others: ( 4 , 4 , ∞ ) , ( 4 , 5 , 14 ) , ( 4 , 6 , 10 ) , ( 4 , 7 , 7 ) , ( 5 , 5 , 7 ) , ( 5 , 6 , 6 ) .
  • Keywords
    Lebesgue’s theorem , Weight , Planar graph , Plane map , Structure properties
  • Journal title
    Discrete Mathematics
  • Serial Year
    2013
  • Journal title
    Discrete Mathematics
  • Record number

    1600521