Title of article :
Incidence matrices of finite attenuated spaces and class dimension of association schemes
Author/Authors :
Guo، نويسنده , , Jun and Li، نويسنده , , Fenggao and Wang، نويسنده , , Kaishun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
5
From page :
42
To page :
46
Abstract :
Let d , k , n be integers with 1 ≤ d < k ≤ n − d . In Kantor (1972), Kantor proved that the incidence matrix of d -dimensional subspaces versus k -dimensional subspaces of an n -dimensional vector space has full row rank over the real number field R . In this paper, we generalize Kantor’s result to the attenuated space A ( n + ℓ ; F q ) and show that the incidence matrix of d -dimensional subspaces versus k -dimensional subspaces of A ( n + ℓ ; F q ) also has full row rank over R . As an application, we obtain upper bounds for the class dimension of association schemes based on attenuated spaces.
Keywords :
Rank , resolving set , Attenuated space , incidence matrix , Class dimension
Journal title :
Discrete Mathematics
Serial Year :
2014
Journal title :
Discrete Mathematics
Record number :
1600546
Link To Document :
بازگشت