Title of article :
Hamiltonian cycles in a generalization of bipartite tournaments with a cycle factor
Author/Authors :
Galeana-Sلnchez، نويسنده , , Hortensia and Goldfeder، نويسنده , , Ilan A. and Urrutia، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
9
From page :
135
To page :
143
Abstract :
In 2004, Bang-Jensen introduced H i -free digraphs, for i in { 1 , 2 , 3 , 4 } , as a generalization of semicomplete and semicomplete bipartite digraphs. Bang-Jensen conjectured that an H i -free digraph D , for i in { 1 , 2 , 3 , 4 } , is Hamiltonian if and only if D is strong and contains a cycle factor (that is, a collection of vertex disjoint cycles covering all the vertices of D ). S. Wang and R. Wang proved the conjecture for i in { 1 , 2 } in 2009 and Galeana-Sلnchez, Goldfeder and Urrutia proved the conjecture for i = 3 in 2010. In this paper, we prove the conjecture for i = 4 .
Keywords :
Generalization of tournaments , Bipartite tournaments , Hamiltonian cycles , Spanning 1-diregular subdigraphs , Cycle factors
Journal title :
Discrete Mathematics
Serial Year :
2014
Journal title :
Discrete Mathematics
Record number :
1600558
Link To Document :
بازگشت