Title of article :
Simplotopal maps and necklace splitting
Author/Authors :
Meunier، نويسنده , , Frédéric، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
We show how to prove combinatorially the Splitting Necklace Theorem by Alon for any number of thieves. Such a proof requires developing a combinatorial theory for abstract simplotopal complexes and simplotopal maps, which generalizes the theory of abstract simplicial complexes and abstract simplicial maps. Notions like orientation, subdivision, and chain maps are defined combinatorially, without using geometric embeddings or homology. This combinatorial proof requires also a Z p -simplotopal version of Tucker’s Lemma.
Keywords :
combinatorial proof , Necklace splitting , Simplotopes , Chain map , Topological combinatorics
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics