• Title of article

    Oscillation stability for continuous monotone surjections

  • Author/Authors

    Todorcevic، نويسنده , , Stevo and Tyros، نويسنده , , Konstantinos، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2014
  • Pages
    9
  • From page
    4
  • To page
    12
  • Abstract
    We prove that for every real ε > 0 there exists a positive integer t such that for every finite coloring of the nondecreasing surjections from [ 0 , 1 ] onto [ 0 , 1 ] there exist t many colors such that their ε -fattening contains a cube, i.e. a set of the form { f ∘ h : f nondecreasing surjection from [ 0 , 1 ] onto [ 0 , 1 ] } where h is a nondecreasing surjection from [ 0 , 1 ] onto [ 0 , 1 ] . We prove this as a consequence of a corresponding result about b ω and we determine the minimal integer t = t ( ε ) that works for a given ε > 0 .
  • Keywords
    Ramsey degree , Dual Ramsey theory , Unit interval , Cantor set
  • Journal title
    Discrete Mathematics
  • Serial Year
    2014
  • Journal title
    Discrete Mathematics
  • Record number

    1600632