Title of article :
Content-based image retrieval using visually significant point features
Author/Authors :
Banerjee، نويسنده , , Minakshi and Kundu، نويسنده , , Malay K. and Maji، نويسنده , , Pradipta، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
This paper presents a new image retrieval scheme using visually significant point features. The clusters of points around significant curvature regions (high, medium, and weak type) are extracted using a fuzzy set theoretic approach. Some invariant color features are computed from these points to evaluate the similarity between images. A set of relevant and non-redundant features is selected using the mutual information based minimum redundancy-maximum relevance framework. The relative importance of each feature is evaluated using a fuzzy entropy based measure, which is computed from the sets of retrieved images marked relevant and irrelevant by the users. The performance of the system is evaluated using different sets of examples from a general purpose image database. The robustness of the system is also shown when the images undergo different transformations.
Keywords :
Color , Invariant Moments , Content-based image retrieval , Fuzzy feature evaluation index , High curvature points
Journal title :
FUZZY SETS AND SYSTEMS
Journal title :
FUZZY SETS AND SYSTEMS