Title of article :
Loomis–Sikorski theorem and Stone duality for effect algebras with internal state
Author/Authors :
Buhagiar، نويسنده , , David and Chetcuti، نويسنده , , Emmanuel and Dvure?enskij، نويسنده , , Anatolij، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
16
From page :
71
To page :
86
Abstract :
Recently Flaminio and Montagna extended the language of MV-algebras by adding a unary operation, called a state-operator. This notion is introduced here also for effect algebras. Having it, we generalize the Loomis–Sikorski Theorem for monotone σ -complete effect algebras with internal state. In addition, we show that the category of divisible state-morphism effect algebras satisfying (RDP) and countable interpolation with an order determining system of states is dual to the category of Bauer simplices Ω such that ∂ e Ω is an F-space.
Keywords :
State , State-operator , Riesz Decomposition Property , Loomis–Sikorski Theorem , Effect algebra , Stone duality , Choquet simplex , Bauer simplex , Simplex , Unital po-group
Journal title :
FUZZY SETS AND SYSTEMS
Serial Year :
2011
Journal title :
FUZZY SETS AND SYSTEMS
Record number :
1601307
Link To Document :
بازگشت