Title of article :
Bootstrapping complex functions
Author/Authors :
Apolloni، نويسنده , , Bruno and Bassis، نويسنده , , Simone and Gaito، نويسنده , , Sabrina and Malchiodi، نويسنده , , Dario، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
17
From page :
648
To page :
664
Abstract :
We formulate a new family of bootstrap algorithms suitable for learning non-Boolean functions from data. Within the Algorithmic Inference framework, the key idea is to consider a population of functions that are compatible with the observed sample. We generate items of this population from standard random seeds and reverse seed probabilities on the items. In this way we may compute in principle, and effectively achieve on paradigmatic examples, direct estimates and confidence intervals for any kind of complex function underlying the observed data according to any hypothesis on the randomness affecting the sample.
Keywords :
Algorithmic inference , New bootstrap methods , Learning non-Boolean functions , Nonlinear regression
Journal title :
Nonlinear Analysis Hybrid Systems
Serial Year :
2008
Journal title :
Nonlinear Analysis Hybrid Systems
Record number :
1602233
Link To Document :
بازگشت