Title of article :
Photophysical properties of 5-hydroxyflavone
Author/Authors :
Norikane، نويسنده , , Yasuo and Itoh، نويسنده , , Hiroki and Arai، نويسنده , , Tatsuo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
6
From page :
163
To page :
168
Abstract :
To investigate the role of the excited triplet state in the deactivation process of 5-hydroxyflavone (5HF), the photophysical process of 5HF was studied by transient absorption, phosphorescence spectroscopies, and semiempirical calculations. The triplet–triplet absorption (T–T) spectra of 5HF and 5-methoxyflavone (5MF) were observed upon direct and triplet-sensitized excitation. The T–T spectrum of 5HF (λmax=350 nm, τT=2.8 μs) was different from that of 5MF (λmax=360 nm, τT=6.8 μs). Estimations of the triplet energies of 5HF and 5MF by quenching experiments, phosphorescence, and semiempirical (PM3/CI4) calculation revealed that 5HF underwent an intramolecular hydrogen atom transfer and formed the tautomer in the excited triplet state. The triplet energy of the normal form of 5HF was 260 kJ mol−1, while that of the tautomer form (5HF′) was 197 kJ mol−1. The triplet energy of 5MF, the model compound of the normal form of 5HF, was 261 kJ mol−1. The PM3/CI4 calculation supported the experimental observations and suggested that the most stable conformer in the triplet state of 5HF is the tautomer form.
Keywords :
transient absorption , proton transfer , 5-Hydroxyflavone , Intramolecular hydrogen bond , Hydrogen atom transfer , Triplet state
Journal title :
Journal of Photochemistry and Photobiology:A:Chemistry
Serial Year :
2004
Journal title :
Journal of Photochemistry and Photobiology:A:Chemistry
Record number :
1613543
Link To Document :
بازگشت