Title of article :
Bacterial exopolysaccharide based nanoparticles for sustained drug delivery, cancer chemotherapy and bioimaging
Author/Authors :
Raveendran، نويسنده , , Sreejith and Poulose، نويسنده , , Aby C. and Yoshida، نويسنده , , Yasuhiko and Maekawa، نويسنده , , Toru and Kumar، نويسنده , , D. Sakthi Kumar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
11
From page :
22
To page :
32
Abstract :
Introduction of a novel biocompatible, stable, biomaterial for drug delivery application remains always challenging. In the present study, we report the synthesis of an extremophilic bacterial sulfated polysaccharide based nanoparticle as a stable biocompatible material for drug delivery, evaluation of anticancer efficacy and bioimaging. Mauran (MR), the sulfated exopolysaccharide extracted from a moderately halophilic bacterium, Halomonas maura was used for the synthesis of nanoparticles along with chitosan (CH). MR/CH nanoparticles were synthesized by simple polyelectrolyte complexation of anionic MR and cationic CH. The MR/CH hybrid nanoparticles formed were ranging between 30 and 200 nm in diameter with an overall positive zeta potential of 27.5 ± 5 mV and was found to be stable under storage in solution for at least 8 weeks. In vitro drug release studies showed a sustained and prolonged delivery of 5-fluorouracil (5FU) for 10–12 days from MR/CH nanoparticles under three different pHs of 4.5, 6.9 and 7.4 respectively. Cytotoxicity assay revealed that MR/CH nanoparticles were non-cytotoxic towards normal cells and toxic to cancer cells. Also, 5FU loaded MR/CH nanoparticles were found more effective than free 5FU in its sustained and controlled manner of killing breast adenocarcinoma cells. Fluorescein isothiocyanate (FITC) labeled MR/CH nanoparticles were used for cell binding and uptake studies; thereby demonstrating the application of dye tagged MR/CH nanoparticles for safe and nontoxic mode of live cellular imaging. We report the introduction of an extremophilic bacterial polysaccharide, MR, for the first time as a novel biocompatible and stable biomaterial to the world of nanotechnology, pharmaceutics and biomedical technology.
Keywords :
Mauran , Sustained Release , Bacterial polysaccharides , extremophiles , Chitosan , Cancer therapy and bioimaging , Halomonas
Journal title :
CARBOHYDRATE POLYMERS
Serial Year :
2013
Journal title :
CARBOHYDRATE POLYMERS
Record number :
1624063
Link To Document :
بازگشت