• Title of article

    Cyclopropylamine inactivation of cytochromes P450: Role of metabolic intermediate complexes

  • Author/Authors

    Cerny، نويسنده , , Matthew A. and Hanzlik، نويسنده , , Robert P.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2005
  • Pages
    11
  • From page
    265
  • To page
    275
  • Abstract
    The inactivation of cytochrome P450 enzymes by cyclopropylamines has been attributed to a mechanism involving initial one-electron oxidation at nitrogen followed by scission of the cyclopropane ring leading to covalent modification of the enzyme. Herein, we report that in liver microsomes N-cyclopropylbenzylamine (1) and related compounds inactivate P450 to a large extent via formation of metabolic intermediate complexes (MICs) in which a nitroso metabolite coordinates tightly to the heme iron, thereby preventing turnover. MIC formation from 1 does not occur in reconstituted P450 systems with CYP2B1/2, 2C11 or 2E1, or in microsomes exposed to gentle heating to inactivate the flavin-containing monooxygenase (FMO). In contrast, N-hydroxy-N-cyclopropylbenzylamine (3) and N-benzylhydroxylamine (4) generate MICs much faster than 1 in both reconstituted and microsomal systems. MIC formation from nitrone 5 (PhCH = N(O)cPr) is somewhat faster than from 1, but very much faster than the hydrolysis of 5 to a primary hydroxylamine. Thus the major overall route from 1 to a P450 MIC complex would appear to involve FMO oxidation to 3, further oxidation by P450 and/or FMO to nitrone 5′ (C2H4C = N(O)CH2Ph), hydrolysis to 4, and P450 oxidation to α-nitrosotoluene as the precursor to oxime 2 and the major MIC from 1.
  • Keywords
    Metabolic intermediate complex , mechanism-based inactivation , Flavin-containing monooxygenase , Suicide substrate , cytochrome P450
  • Journal title
    Archives of Biochemistry and Biophysics
  • Serial Year
    2005
  • Journal title
    Archives of Biochemistry and Biophysics
  • Record number

    1627121