Title of article :
Comparison of artificial neural networks and general linear model approaches for the analysis of abrasive wear of concrete
Author/Authors :
Gencel، نويسنده , , Osman and Kocabas، نويسنده , , Fikret and Gok، نويسنده , , Mustafa Sabri and Koksal، نويسنده , , Fuat، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
This study aims to determine the influence of metallic aggregate content, cement content and different loads applied on the abrasive wear of concrete by using artificial neural networks (ANN) and general linear model (GLM) approaches. For this purpose, experimental studies are made and suitable models based on experimental results are developed to estimate the abrasive wear of concrete. In these models, 60 data set was used. For training set, 48 data (80%) were randomly selected and the residual data (12 data, 20%) were selected as test set. Root mean square error (RMSE) and determination coefficient (R2) statistics are used as evaluation criteria of the ANN and GLM models and the experimental results are compared with these models. The comparison results indicate that the ANN models are superior to the GLM models in modeling of the influence metallic aggregate content, cement content and different loads applied on the abrasive wear of concrete.
Keywords :
Hematite , Concrete , Artificial neural networks , General linear model , WEAR
Journal title :
Construction and Building Materials
Journal title :
Construction and Building Materials