Title of article :
Remote estimation of crop gross primary production with Landsat data
Author/Authors :
Gitelson، نويسنده , , Anatoly A. and Peng، نويسنده , , Yi and Masek، نويسنده , , Jeffery G. and Rundquist، نويسنده , , Donald C. and Verma، نويسنده , , Shashi and Suyker، نويسنده , , Andrew and Baker، نويسنده , , John M. and Hatfield، نويسنده , , Jerry L. and Meyers، نويسنده , , Tilden، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
11
From page :
404
To page :
414
Abstract :
An accurate and synoptic quantification of gross primary production (GPP) in crops is essential for studies of carbon budgets at regional and global scales. In this study, we tested a model, relating crop GPP to a product of total canopy chlorophyll (Chl) content and potential incident photosynthetically active radiation (PARpotential). The approach is based on remotely sensed data; specifically, vegetation indices (VI) that are proxies for total Chl content and PARpotential, which is incident PAR under a condition of minimal atmospheric aerosol loading. Using VI retrieved from surface reflectance Landsat data, we found that the model is capable of accurately estimating GPP in maize, with coefficient of variation (CV) below 23%, and in soybean with CV below 30%. The algorithms established and calibrated over three Mead, Nebraska AmeriFlux sites were able to estimate maize and soybean GPP at tower flux sites in Minnesota, Iowa and Illinois with acceptable accuracy.
Keywords :
chlorophyll content , Vegetation index , Gross primary production , Potential incident photosynthetically active radiation , Landsat
Journal title :
Remote Sensing of Environment
Serial Year :
2012
Journal title :
Remote Sensing of Environment
Record number :
1632025
Link To Document :
بازگشت