• Title of article

    Estimation of surface shortwave radiation components under all sky conditions: Modeling and sensitivity analysis

  • Author/Authors

    Chen، نويسنده , , Pei-Ling and Yan، نويسنده , , Guangjian and Wang، نويسنده , , Tianxing and Ren، نويسنده , , Huazhong and Calbَ، نويسنده , , Josep and Zhao، نويسنده , , Jing and McKenzie، نويسنده , , Richard، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2012
  • Pages
    13
  • From page
    457
  • To page
    469
  • Abstract
    Clouds are the most important modulator of the amount of solar energy absorbed by the earth–atmosphere system. Traditional one-dimensional (1D) plane-parallel atmospheric radiative transfer models which use the independent pixel approximation (IPA) can only consider two extreme conditions, i.e., either cloud-free or overcast cases. In this paper, two cloud fraction related factors (hemispherical effective cloud fraction and regional cloud fraction) are calculated and incorporated into MODTRAN 4 (one of the most popular radiative transfer packages) to simulate the surface shortwave radiation components and the top-of-atmosphere (TOA) radiance for all possible solar-cloud-viewing geometries. The accuracy of this modified solar radiative transfer model (named as MODTRAN-CF) is consistent with its prototype (MODTRAN 4) which has been widely used and validated in radiative transfer modeling. Some field measurements are used to validate the superiority of MODTRAN-CF. For further understanding and simplifying of this physical model, a global sensitivity analysis (GSA) method is employed to analyze the effect of model parameters on each surface shortwave radiation component. Five parameters including solar zenith angle, surface albedo, hemispherical effective cloud fraction, ground altitude and atmospheric visibility show non-negligible impacts on almost all surface shortwave fluxes, which indicates that these five parameters should be carefully considered in the future modeling of the surface shortwave radiation fluxes. Two cloud optical thickness related parameters (cloud extinction coefficient and cloud thickness) exhibit obvious importance only under cloudy illumination condition especially with optically thin clouds. These findings on the improved model will enhance our knowledge on how to accurately model the surface shortwave radiation fluxes under all sky conditions.
  • Keywords
    MODTRAN-CF , Hemispherical effective cloud fraction , Global sensitivity analysis
  • Journal title
    Remote Sensing of Environment
  • Serial Year
    2012
  • Journal title
    Remote Sensing of Environment
  • Record number

    1632240